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Overview
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Reporting Simulation ModelsAccounting for Output Variability Decision-Making via 
Simulation

Focus: what happens after the model is built



INTRODUCTION
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Simulation Project
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Good analysis and reporting adds value

• Clarity aids model reuse and replication

• Honesty about the assumptions made 
develops trust in the model

• Accuracy in the estimates of uncertainty 
allows a decision-maker to take this into 
account

• Insights develop from high quality analysis 
and imaginative descriptions
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ACCOUNTING FOR OUTPUT 
VARIABILITY

Russell Cheng
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Simulation output is stochastic
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Queue Example



Replication 1

Average number in queue = 22.1



Replication 2

Average number in queue = 70.45



Replication 3

Average number in queue = 122.2



Replication 4

Average number in queue = 110.2



Replication 5

Average number in queue = 99.4



But that isn’t all that’s random: input uncertainty
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x1 x2 x3 X4

1.34 3.54 4.24 5.30

3.25 5.47 3.68 0.04

… … … …

EDF Input

α, β, γ
Fitted parameters

Simulation 
model

Uncertain output
• Input uncertainty
• Natural variability



Quick Assessment of Input Uncertainty
• Identifies the largest contributors to input uncertainty

– Provides evidence of where more input data might be needed

– Helps to give an honest view of the model results

• Assume we have limited real-world data  {X1, X2, …, Xm}
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For i = 1 to b
Generate a bootstrap sample of the real-world data {Xi1*, Xi2*, …, Xim*}
Fit an input distribution �𝐹𝐹𝑖𝑖∗to {Xi1*, Xi2*, …, Xim*}
Simulate r replications of the simulation model using �𝐹𝐹𝑖𝑖∗
Record outputs Yj (j=1, …, r)
Calculate µi = mean of the Yj

Next b
Calculate σI = standard deviation of the means µi, i = 1, …, b

Report γ = 𝜎𝜎𝐼𝐼 𝑛𝑛
𝜎𝜎

Ankenmann and Nelson (2012): WSC



Bootstrapping
• Used to estimate the distribution of statistics calculated 

from data

• Works by resampling from the data many times and 
recalculating the statistic

15

F0(y) Y T(y)

Null distribution Sample Test statistic

Ideally repeat basic process B times: {T1, T2, …, TB}



Bootstrapping

• Repeating the original process may not be possible/desirable

– Instead: the best estimate of the original distribution is the EDF of the 
sample Y
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… … Bootstrap 
distribution of T

More details: Cheng and Currie (2009)
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Reporting input uncertainty
• High γ implies input uncertainty could be a problem

– Report these parameters as requiring more input data

– Highlight this as an additional level of uncertainty

• Low γ (< 1) implies simulation variability accounts for more of the uncertainty

• One approach is to increase the input data until input uncertainty is negligible

• Probabilistic sensitivity analysis as used by health economists 

• More work needed determining how to report input uncertainty
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REPORTING SIMULATION MODELS
Tom Monks, Martin Kunc, Stephan Onggo, Stewart Robinson, Simon Taylor
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What is the purpose of reporting?
• Understand what has been done

– Appreciation of the approximations

– Develop trust in the results

• Reuse and reproducibility

– Applied research that cannot be reproduced is not useful

– Commercial models that cannot be reused or learned from waste resources

• Knowledge management

– Maintaining knowledge and understanding within the organisation
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What has gone wrong?
• Academic simulation papers rarely contain enough detail to enable reproducibility

• Rahmandad and Sterman (2012) reviewed all papers in System Dynamics Review 2010-2011

– 27 papers reported an SD model

– 16 papers (59%) included no equations at all

– 2 papers (7%) reported ‘some’ equations

• Why?

– Models are complex: lengthy model descriptions can be dull

– The “code” may not be sufficient: proprietary software; poor explanations

– Data are commercially sensitive: see previous question!
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STRENGTHENING 
THE 
REPORTING OF 
EMPIRICAL 
SIMULATION 
STUDIES

Can reporting guidelines help?





How to use STRESS
• STRESS comes in three flavours:

– STRESS-DES

– STRESS-ABS

– STRESS-SD

• They are guidelines, not rules

• You can still be creative in how you describe your model and structure your 
article but STRESS provides a checklist to ensure all necessary details is there

• Use appendices and supplementary information where necessary
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Why use guidelines?
There is no silver bullet to ensure reproducibility, but we need to do more than we 
are.

During the development of STRESS we were asked:

• ‘What motivation do academic authors have to follow the guidelines?’

• ‘Why would an author want to do more work?’

Our response:

1. Write and submit better quality papers in the first instance (less rework)

2. Increase the chance of more structured feedback 

3. Get their contributions reused (and maybe even cited ).  
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DECISION-MAKING VIA SIMULATION
Tom Monks, Marion Penn

26



Decision makers are people …

• Emotion can play an important 
part (Bechara and Damasio, 
2005)

• There’s rarely just one objective

– Simulation models allow decision 
makers to account for multiple 
criteria intuitively (Belton and 
Stewart, 2002)

• And we haven’t mentioned 
politics!
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… but algorithms can help

OvS algorithms:

• Make the simulation tests more efficient

• Provide a measure of the confidence that can be placed in the results

• Work well with automated systems

• Account for uncertainties and allow for complex detail
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Optimisation via simulation



Classification of Problems
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1.Small number of 
solutions

e.g. set-up for a 
factory/hospital

2.Decision 
variables are 
continuous 

e.g. stochastic 
root-finding

3. Decision variables 
discrete and integer-

ordered

e.g. optimizing the 
number of call-centre 

staff

Nelson and Hong, 2009



Ranking and selection: problem description
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Sample Averages

How many 
simulation 
runs?



Ranking and Selection: Assumptions
• We have a set of m design points x1, x2, …, xm

• Each design point has an underlying true mean associated with it µ1, µ2, …, µm

• We run the simulation ni times at each of the design points xi, i=1, …, m and find 
the sample averages of the output 
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Design 
Point

Number of 
Runs

Simulation Output Sample 
Average

x1 n1 y1(x1), y2(x1), …, yn1(x1) E[Y(x1)]

x2 n2 y1(x2), y2(x2), …, yn2(x2) E[Y(x2)]

… … … …

xm nm y1(xm), y2(xm), …, ynm(xm) E[Y(xm)]



Example: R&S for decision making
• Produce a shortlist of solutions

• Allow for multiple objectives by imposing chance constraints

• Develop a method that works for general output

– No normality assumptions!

• And that allows for common random numbers (CRN)

– Exploits the variance reduction of CRN

• Easy-to-use, downloadable, minimal software engineering!

32https://github.com/CLAHRCWessex/BootComp



Two-stage procedure
• Two stages to reduce interactions with the 

simulation software

• Depends heavily on bootstrapping

– Excellent introduction in Cheng (2018)
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Monks and Currie, WSC (2018)

Stage 1:
Run n1 replications of the simulation model for 

ALL systems using CRN if available

Primary outputs Xij
Secondary outputs Yijl

Stage 2:
Run n2 replications of the simulation model for 
systems likely to satisfy chance constraints and 

of a high quality using CRN if available

Shortlist of 
feasible, high-
quality solutions



CONCLUSION

34



Conclusion
• Simulation has always worked well to involve decision-makers in the process

– Incorporating new ideas about the impact of emotions on decision-making 
could improve this further

– Elegant solutions to optimisation via simulation problems are valuable

• Better reporting of simulation studies will give them more value

– Reuse and reproduce

• Being honest about all of the variability will engender more trust

– More work is needed on practical reporting of input uncertainty
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The Acronym …

• Clear

• Honest

• Accurate

• Insightful
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Time for tea!
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